Optimization of a circular piezoelectric bimorph for a micropump driver
نویسندگان
چکیده
Piezoelectric bimorph actuation has been successfully used in numerous types of microdevices, most notably micropumps. However, even for the simple case of circular geometry, analytical treatments are severely limited. This study utilized the finite-element method to optimize the deflection of a circular bimorph consisting of a single piezoelectric actuator, bonding material and elastic plate of finite dimensions. Optimum actuator dimensions were determined for given plate dimensions, actuator-to-plate stiffness ratio and bonding layer thickness. Dimensional analysis was used to present the results for fixedand pinned-edge conditions in a generalized form for use as a design tool. For an optimally-thick actuator, the optimum actuator-to-plate radius ratio ranged from 0.81 to 1.0, and was independent of the Young’s modulus ratio. For thin plates, a bonding layer minimally affected the optimum dimensions. The optimized actuator dimensions based on a model of an actual device were within 13% of the fixed-edge condition.
منابع مشابه
Topology Optimization of the Thickness Profile of Bimorph Piezoelectric Energy Harvesting Devices
Due to developments in additive manufacturing, the production of piezoelectric materials with complex geometries is becoming viable and enabling the manufacturing of thicker harvesters. Therefore, in this study a piezoelectric harvesting device is modelled as a bimorph cantilever beam with a series connection and an intermediate metallic substrate using the plain strain hypothesis. On the other...
متن کاملImproving Power Density of Piezoelectric Vibration-Based Energy Scavengers
Vibration energy harvesting with piezoelectric materials currently generate up to 300 microwatts per cm2, using it to be mooted as an appropriate method of energy harvesting for powering low-power electronics. One of the important problems in bimorph piezoelectric energy harvesting is the generation of the highest power with the lowest weight. In this paper the effect of the shape and geometry ...
متن کاملTopology Optimization Applied to the Design of Functionally Graded Piezoelectric Bimorph
Functionally Graded Materials (FGMs) possess continuously graded material properties and are characterized by spatially varying microstructures. The smooth variation of properties may offer advantages such as reduction of stress concentration and increased bonding strength. Recently, this concept has been explored in piezoelectric materials to improve properties and to increase the lifetime of ...
متن کاملResonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester
The concept of “energy harvesting” is to design smart systems to capture the ambient energy and to convert it to usable electrical power for supplying small electronics devices and sensors. The goal is to develop autonomous and self-powered devices that do not need any replacement of traditional electrochemical batteries. Now piezoelectric cantilever structures are being used to harvest vibrati...
متن کاملShape and geometrical parameter effects of a bimorph piezoelectric beam on energy harvesting performance
In this paper, the shape influence of piezoelectric beams including triangle, trapezoid, rectangle, inverted trapezoid, convex parabola, concave parabola, and comb-shaped (a combination of two triangular beams with a connector of 4 mm length) are addressed and analyzed by FEM. The analysis is performed for a bimorph piezoelectric beam. The analyzed parameters include the beam length, thickness ...
متن کامل